Design of Deep Foundations:
Drilled Shafts and Piles Under Lateral and Axial Loading

A Seminar and Workshop Featuring Computer Programs from Ensoft, Inc.

April 26-28, 2017

LOCATION & RESERVATIONS

Ensoft, Inc. – Office Building
3003 West Howard Lane, Austin, Texas 78728
Tel. (512) 244-6464, Fax (512) 244-6067

Sample Hotel Information:
- **Courtyard by Marriott**, Tel. (512) 502-8100
 9409 Stonelake Blvd, Austin, TX 78759
- **Hampton Inn (Northwest)**, Tel. (512) 349-9898
 3908 W. Braker Lane, Austin, TX 78759
- **La Quinta Inn & Suites**, Tel. (512) 832-2121
 11901 N Mopac Expy, Austin, TX 78759

(These hotels are within 5-10 minutes driving distance from the training facility)

REGISTRATION & FEES

<table>
<thead>
<tr>
<th>Single Registration</th>
<th>Early Rates $(^1)(^*)$</th>
<th>Std. Rates $(^1)(^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Day Session</td>
<td>$570 $(^1) $690</td>
<td></td>
</tr>
<tr>
<td>Two-Day Session</td>
<td>$820 $(^1) $1000</td>
<td></td>
</tr>
<tr>
<td>All 3-Day Sessions</td>
<td>$1060 $(^1) $1290</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Multiple Registrations $(^2)(^*)$</th>
<th>Early Rates $(^1)(^*)$</th>
<th>Std. Rates $(^1)(^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-Day Session</td>
<td>$530 $(^1) $640</td>
<td></td>
</tr>
<tr>
<td>Two-Day Session</td>
<td>$760 $(^1) $930</td>
<td></td>
</tr>
<tr>
<td>All 3-Day Sessions</td>
<td>$990 $(^1) $1200</td>
<td></td>
</tr>
</tbody>
</table>

$(^1)$ Includes student workbook, lunch, coffee breaks and refreshments.
$(^2)$ Valid for 2 or more registrations from the same company.
See cancellation policy under General Notes on page 3.

TOTAL $__________________________

Name(s):
Company:
Address:
City/ST/Zip:
Phone:
Fax:
E-mail:

Please select your method of payment:
☐ Check enclosed ☐ Credit card

Name on card:
Number:
Exp.:

For more details or online registration, visit us at www.ensoftinc.com or send email to seminars@ensoftinc.com

SPEAKERS

William M. Isenhower, Ph.D., P.E.
Consultant for LPILE, Ensoft, Inc.
Dr. Isenhower is a registered professional engineering in the States of Texas and Louisiana, with over 40 years of experience in civil engineering, with an emphasis on geotechnical engineering. His experience has been in consulting, government service, university teaching, and contract research. He has been engaged in consulting projects, site investigations, foundation analysis and design, slope stability analysis and design, and retaining structure analysis and design. Dr. Isenhower has served as an Expert on Mission for the United Nations Development Program and has served as an independent technical reviewer for the US Army Corps of Engineers. He has authored over 30 technical papers and reports, and has presented invited lectures in the United States and abroad. Dr. Isenhower is a member of the Academy of Distinguished Graduates of the Department of Civil, Architectural, and Environmental Engineering of the University of Texas at Austin.

Shin-Tower Wang, Ph.D., P.E.
President, Ensoft, Inc., Program Manager for SHAFT, LPILE, and PYWALL.
Dr. Wang is a registered professional engineering in the State of Texas, with over 40 years of experience in civil engineering, with an emphasis on geotechnical and structural engineering. He has engaged in numerous consulting projects in soil structure interaction analyses, pile loading tests, deep foundation designs, and numerical analyses. Dr. Wang received M.S. and Ph.D. degrees from The University of Texas at Austin. He has published over 30 technical papers and reports, and has coauthored several computer programs that are currently sold by Ensoft, Inc.

Gonzalo Vasquez, Ph.D., P.E.
Program Manager for LPILE and GROUP, Ensoft, Inc.
Dr. Vasquez is a registered engineer in the States of Texas and California, with over 30 years of experience in civil engineering. Dr. Vasquez is an expert in solid structural modeling for nonlinear, three-dimensional stress analysis. Dr. Vasquez received M.S. and Ph.D. degrees from The University of Texas at Austin.

Farnyh Michael Menq, Ph.D.
Program Engineer for Dynamic Tests, Ensoft, Inc.
Dr. Menq has been working in the field of dynamic testing in the past 17 years at the University of Texas. He has extensive experience in laboratory resonant column and torsional shear tests, laboratory free-free resonant column tests, Rolling Dynamic Deflectometer (RDD) tests, Stationary Dynamic Deflectometer (SDD) tests, Spectral Analysis of Surface Waves (SASW), impulse-echo tests, cross hole tests, downhole tests, in-situ nonlinear tests, and in-situ liquefaction tests. He has published over 25 technical papers and reports. Dr. Menq received his Ph. D. degree from the University of Texas at Austin.

SPECIAL OFFER

Software products developed by ENSOFT, INC. may be purchased by course attendees at a 20% discount within one month of the Short Course. A bound manual of literature of covered topics is provided for Session 1 and a separate manual is provided for Session 2. Additional short-course manuals may be ordered in advance at $80 per unit.
Design of Deep Foundations: Drilled Shafts and Piles Under Lateral and Axial Loading

A Seminar and Workshop Featuring Computer Programs from Ensoft, Inc.

Program

Wed. Apr. 26, 2017 (Full Day)

The first full day has been prepared for expert-level training in the design of single piles or shafts under lateral loads using the LPILE software.

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Arrival, computer setup, software installation</td>
<td>Isenhower</td>
</tr>
<tr>
<td>8:15</td>
<td>Course introduction</td>
<td>Isenhower</td>
</tr>
<tr>
<td>8:30</td>
<td>Principles of Soil-Structure Interaction. Modern principles for design of foundations, types of loading.</td>
<td>Isenhower</td>
</tr>
<tr>
<td>9:30</td>
<td>Theoretical Basis of Lateral Load-Transfer Models and Experimental Validation</td>
<td>Isenhower</td>
</tr>
<tr>
<td>10:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>$p-y$ Curves Available in LPILE and GROUP</td>
<td>Isenhower</td>
</tr>
<tr>
<td>11:00</td>
<td>Structural Analysis of Piles and Drilled Shafts, Nonlinear Moment-Curvature Behavior of Drilled Shafts and Prestressed Concrete Piles</td>
<td>Isenhower</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Software Training for LPILE (Part 1)</td>
<td>Isenhower</td>
</tr>
<tr>
<td>2:45</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td>Software Training for LPILE (Part 2)</td>
<td>Isenhower</td>
</tr>
<tr>
<td>4:00</td>
<td>General Question and Answer. Consultation on Problems of Interest</td>
<td>Isenhower</td>
</tr>
</tbody>
</table>

Thu. Apr. 27, 2017 (Full Day)

The second full day adds training in the design of single drilled shafts under axial loads and pile groups under combined loading.

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Practical Considerations for Design of Drilled Shaft Foundations</td>
<td>Isenhower</td>
</tr>
<tr>
<td>9:30</td>
<td>Drilled Shafts and Driven Piles Under Axial Loading. Use of $t-z$ and $q-w$ curves</td>
<td>Isenhower</td>
</tr>
<tr>
<td>10:00</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:15</td>
<td>Software Training with SHAFT</td>
<td>Wang</td>
</tr>
<tr>
<td>11:00</td>
<td>Testing of a fully instrumented pile under axial/lateral loading. Inside and outside practical presentations.</td>
<td>Isenhower</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td>Analysis of Pile Groups Under Axial and Lateral Loading.</td>
<td>Vasquez</td>
</tr>
<tr>
<td>2:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>Software Training for GROUP – Basic Input, Visualization of Results</td>
<td>Vasquez</td>
</tr>
<tr>
<td>4:00</td>
<td>Software Training for Group – Advanced Input, Interactive Group Modeling</td>
<td>Vasquez</td>
</tr>
<tr>
<td>5:00</td>
<td>Ensoft Reception at Office Yard – Full-Scale Lateral Loading of 24-in OD Instrumented Shafts (drinks and light refreshments will be provided)</td>
<td></td>
</tr>
</tbody>
</table>

For more details or online registration, visit us at www.ensoftinc.com or send email to seminars@ensoftinc.com
SPRING 2017 - ENSOFT SHORT COURSE

Design of Deep Foundations: Drilled Shafts and Piles Under Lateral and Axial Loading
A Seminar and Workshop Featuring Computer Programs from Ensoft, Inc.

Program

Fri. Apr. 28, 2017 (Full Day)
The final day adds training in the design of single piles under axial loads, common NDT and flexible retaining walls.

<table>
<thead>
<tr>
<th>Time</th>
<th>Subject</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Driven Piles Under Axial Loading</td>
<td>Wang</td>
</tr>
<tr>
<td>9:30</td>
<td>Software Training for APILE</td>
<td>Wang</td>
</tr>
<tr>
<td>10:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>10:30</td>
<td>Introduction to Non-Destructive Tests on Drilled Shafts</td>
<td>Menq</td>
</tr>
<tr>
<td>11:15</td>
<td>Modal Analyses of Structures Using Ambient Vibration</td>
<td>Menq</td>
</tr>
<tr>
<td>12:00</td>
<td>Lunch Break</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td>Introduction to the Designs of Flexible Retaining Walls</td>
<td>Wang</td>
</tr>
<tr>
<td>2:30</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>2:45</td>
<td>Software Training for PYWALL</td>
<td>Wang</td>
</tr>
<tr>
<td>3:30</td>
<td>General Question and Answer. Consultation on Problems of Interest</td>
<td>All</td>
</tr>
<tr>
<td>3:45</td>
<td>End of Short Course</td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES

All students will receive a student notebook containing reference and lecture materials, along with USB memory stick of relevant technical materials.

Course attendees are encouraged to bring a laptop computer to the course. Attendees bringing computers to the course will be loaned software to use during the course and will be able to participate in the solution of design exercises. A limited number of computers can be loaned at no cost.

Those attending the short course are also encouraged to bring design problems of interest to them and their employers. Advice on how to set up design computations for the design problem and guidance about preparation of plans and specification will be provided by the instructors.

The number of spaces available in the short course is limited, so registration will be based on a first come-first served basis.

Cancellations made prior to two weeks from the Short Course will be charged half the total fees. Late cancellations are not refundable but payment may be extended to a future short course. Emergency cancellations may be accepted until five days before short course.

Companies wishing to inquire about having the same training course or another advanced training course to be held at their offices may call Ensoft to obtain a cost proposal.

Companies wanting information about the two-day short course on Design and Construction of Drilled Shafts offered by Ensoft may call to obtain a cost proposal.

COURSE BENEFITS

♦ Learn how to use effective tools and proper numerical models for deep foundations ♦ Improve the efficiency of your future foundation designs ♦ Keep short course manuals and personal notes as reference for future numerical models and designs of deep foundations ♦ Use the limited 20% discount on software upgrades and new purchases for the whole office site of registered attendants to the short course ♦ Earn up to 19 PDH credits towards PE renewals for this course ♦

PDH CREDITS

Attendance of this short course will provide you with up to 19 professional development hours (PDH) that can be applied towards your local P.E. license requirements for renewal. Ensoft provides a signed document for the participation in the professional short course along with the number of hours of training.

Call us at 512-244-6464 or visit our web site to register for the short course

For more details or online registration, visit us at www.ensoftinc.com or send email to seminars@ensoftinc.com
CURRENT ENSOFT PRICE LIST & NEW RELEASES

Software Titles:

- LPILE 2016 .. $1,000
- GROUP 2016 .. $1,800
- SHAFT 2017 .. $850
- PYWALL 2015 ... $850
- APILE 2015 ... $850
- APILE 2015 (Offshore Version) $1,250
- TZPILE 2014 .. $850
- StabilPro 2015 ... $580
- LPA 3.0 ... $490
- DynaPile 2016 .. $1,900
- DynaMat 1.0 ... $1,490
- DynaN 3.0 ... $2,900
- Ensoft Dynamic Suite $5,000
- GeoMat 2014 ... $1,450
- UTexas4 .. $2,250
- Atena (FEM analysis of reinforced concrete) ... call
- AMPS (3-D Finite Element Analysis) call

Call for volume, upgrades, and academic pricing

(Prices above are before 20% participation discount)

GROUP 2016

- Introduced variable ground layers that can start at any soil layer and automatic calculation of load-vs-settlement for different pile penetrations.
- Apply & solve for user-specified displacements/rotations (in 3D space) in the GROUP model.
- Foundation stiffness can be generated based on equivalent elastic stiffness (thus generating a symmetric stiffness matrix);
- Users can specify p-y modification factors for lateral loads along the length (depth) of the piles;
- Tapered pile sections are now added to the type of piles that can be analyzed in group models;
- GROUP is able to estimate the variation of axial loads and axial displacements along the length of the piles;
- When using models with multiple load cases, graphs can be displayed for user-specified load cases;
- Users can select values to be printed in output files, so the tabular output text can fit into standard paper sizes;
- Compatibility to Win 10 and new speed buttons and file-management features are also updated.

SHAFT 2017

- Adds a new option for load transfers in sand so users can select whether to use: i) Ko Method, ii) Beta Method or the iii) Kulhawy and Chen Method.
- Users may now enter a specific interface angle between shaft and sand when using the Ko Method or the Kulhawy and Chen Method.
- Includes a new Option to generate LRFD Design Charts for specified settlements. For each user-specified total settlement the program now provides a design chart of Total Axial Capacity versus Shaft Penetration for various user-specified Shaft Diameters.
- Users may now select to evaluate load transfers for multiple pile penetrations to see the results in one graph. This is useful to see impact of shaft penetration on plots of Axial Load vs Settlement or increased Total Axial Capacity vs. Depth.
- Added new types of graphs and improved versions of existing graphs.
- A new 3D View has been added to improve visualization of the modeled shaft and soils and for presentation.
- Users can now choose Elevation values in vertical axes instead of depths from top of soil (for applicable charts).
- With SHAFT v2017 users can export observed graphics to formatted Excel spreadsheets. Users can thus easily reformat the graphical display for use of different units, titles & presentation.

Books/Publications:

 - Hardback.. $130
- Analysis and Design of Shallow and Deep Foundations
 Lymon C. Reese et al. (Wiley, Nov. 2005, 608pp.)
 - Hardback.. $130

APILE 2015

- User interface has more features than earlier versions, to enhance input of data that is only applicable to selected parameters and methods.
- Users can select any of the observed graphics for export to an Excel spreadsheet that APILE configures with all correct conversions and necessary tabs. Users can thus easily reformat the graphical display for use of different units and titles.
- Pipe piles can now be specified if they are as open ended or closed ended.
- For closed-ended pipe piles, APILE computes the tension capacity while taking into account pile buoyancy.
- Precast piles can be selected as either circular or square/rectangular/octagonal.
- For FHWA models of pile capacity, users are able to override the internal computations for adhesion factors in any clay layer (by default, APILE calculates internally but users can now select different computation methods).